430 research outputs found

    Power-Aware Testing For Low-Power VLSI Circuits

    Get PDF
    Low-power VLSI circuits are indispensable for almost all types of modern electronic devices, from battery-driven mobile gadgets to harvested-energy-driven wireless sensor systems. However, the testing of such low-power VLSI circuits has become a big challenge, especially due to the excessive power dissipation during scan testing. This paper will highlight three major test-power-induced problems (namely heat, false failures, clock stretch) and describe how to mitigate them with power-aware VLSI testing. Future research topics in this field will also be discussed.13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT-2016), 25-28 October 2016, Hangzhou, Chin

    VLSI Testing and Test Power

    Get PDF
    This paper first reviews the basics of VLSI testing, focusing on test generation and design for testability. Then it discusses the impact of test power in scan testing, and highlights the need for low-power VLSI testing.2011 International Green Computing Conference and Workshops (IGCC 2011), July 25-28, 2011, Orlando, FL, US

    A Flexible Power Control Method for Right Power Testing of Scan-Based Logic BIST

    Get PDF
    High power dissipation during scan-based logic BIST is a crucial problem that leads to over-testing. Although controlling test power of a circuit under test (CUT) to an appropriate level is strongly required, it is not easy to control test power in BIST. This paper proposes a novel power controlling method to control the toggle rate of the patterns to an arbitrary level by modifying pseudo random patterns generated by a TPG (Test Pattern Generator) of logic BIST. While many approaches have been proposed to control the toggle rate of the patterns, the proposed approach can provide higher fault coverage. Experimental results show that the proposed approach can control toggle rates to a predetermined target level and modified patterns can achieve high fault coverage without increasing test time.2016 IEEE 25th Asian Test Symposium (ATS), 21-24 Nov. 2016, Hiroshima, Japa

    STAHL: A Novel Scan-Test-Aware Hardened Latch Design

    Get PDF
    As modern technology nodes become more susceptible to soft errors, many radiation hardened latch designs have been proposed. However, redundant circuitry used to tolerate soft errors in such hardened latches also reduces the test coverage of cell-internal manufacturing defects. To avoid potential test escapes that lead to soft error vulnerability and reliability issues, this paper proposes a novel Scan-Test-Aware Hardened Latch (STAHL). Simulation results show that STAHL has superior defect coverage compared to previous hardened latches while maintaining full radiation hardening in function mode.24th IEEE European Test Symposium (ETS\u2719), May 27-31, 2019, Baden-Baden, German

    A novel scan segmentation design method for avoiding shift timing failure in scan testing

    Get PDF
    ITC : 2011 IEEE International Test Conference , 20-22 Sep. 2011 , Anaheim, CA, USAHigh power consumption in scan testing can cause undue yield loss which has increasingly become a serious problem for deep-submicron VLSI circuits. Growing evidence attributes this problem to shift timing failures, which are primarily caused by excessive switching activity in the proximities of clock paths that tends to introduce severe clock skew due to IR-drop-induced delay increase. This paper is the first of its kind to address this critical issue with a novel layout-aware scheme based on scan segmentation design, called LCTI-SS (Low-Clock-Tree-Impact Scan Segmentation). An optimal combination of scan segments is identified for simultaneous clocking so that the switching activity in the proximities of clock trees is reduced while maintaining the average power reduction effect on conventional scan segmentation. Experimental results on benchmark and industrial circuits have demonstrated the advantage of the LCTI-SS scheme

    Effects of the Largest Lake of the Tibetan Plateau on the Regional Climate

    Get PDF
    Qinghai Lake is the largest lake in China. However, its influence on the local climate remains poorly understood. By using an atmosphere-lake coupled model, we investigated the impact of the lake on the local climate. After the adjustment of four key parameters, the model reasonably reproduced the lake-air interaction. Superimposed by the orographic effects on lake-land breeze circulation, the presence of the lake enhanced precipitation over the southern part of the lake and its adjacent land, while slightly reduced precipitation along the northern shore of the lake. The lake effect on local precipitation revealed a distinct seasonal and diurnal variability, reducing precipitation in May (-6.6%) and June (-4.5%) and increasing it from July (5.7%) to November (125.6%). During the open water season, the lake's daytime cooling effect weakened and the nighttime warming effect strengthened, affecting spatial distribution and intensity of lake-induced precipitation. In early summer, precipitation slightly decreased over the north part of the lake due to the lake's daytime cooling. In turn, lake-induced nighttime warming increased precipitation over the southern section of the lake and its adjacent land. With the start of the autumn cooling in September, heat and moisture fluxes from the lake resulted in precipitation increase in both daytime and nighttime over the entire lake. In October, the background atmospheric circulation coupled with the strong lake effects lead to a small amount but high proportion of lake-induced precipitation spreading evenly over the lake.Peer reviewe

    Fault Detection with Optimum March Test Algorithm

    Get PDF
    This paper presents a research work aimed to detect previously-undetected faults, either Write Disturb Faults (WDFs) or Deceptive Read Destructive Faults (DRDFs) or both in March Algorithm such as MATS++(6N), March C-(10N), March SR(14N), and March CL(12N). The main focus of this research is to improve fault coverage on Single Cell Faults as well as Static Double Cell Faults detection, using specified test algorithm. Transition Coupling Faults (CFtrs), Write Destructive Coupling Faults (CFwds) and Deceptive Read Destructive Faults (CFdrds) are types of faults mainly used in this research. The experiment result published in [1] shows BIST (Built-In-Self-Test) implementation with the new algorithm. It provides the same test length but with bigger area overhead, we therefore proposed a new 14N March Test Algorithm with fault coverage of more than 95% using solid 0s and 1s Data Background (DB). This paper reveals the design methodology to generate DB covers all memories function by applying non-transition data, transition data, and single read and double read data. The automation hardware was designed to give the flexibility to the user to generate other new March Algorithm prior to the selected algorithm and analyzed the performance in terms of fault detection and power consumption
    • …
    corecore